On the Bayesian estimation for the stationary Neyman-Scott point processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of the Neyman-Scott Process

In this paper we introduce a generalization of the Neyman-Scott process (Neyman and Scott, 1958) that allows for regularity in the parent process. In particular, we consider the special case where the parent process is a Strauss process with offspring points dispersed about the parent points. Such a generalization allows for point realizations that show a mix of regularity and clustering in the...

متن کامل

MML is not consistent for Neyman-Scott

Minimum Message Length (MML) is a popular method for statistical inference, belonging to the Minimum Description Length (MDL) family. It is a general name for any of several computationally-feasible approximations to the generally NP-Hard Strict Minimum Message Length (SMML) estimator. One often-cited showcase for the power of MML is the Neyman-Scott estimation problem, where most popular estim...

متن کامل

“the effect of risk aversion on the demand for life insurance: the case of iranian life insurance market”

abstract: about 60% of total premium of insurance industry is pertained?to life policies in the world; while the life insurance total premium in iran is less than 6% of total premium in insurance industry in 2008 (sigma, no 3/2009). among the reasons that discourage the life insurance industry is the problem of adverse selection. adverse selection theory describes a situation where the inf...

15 صفحه اول

Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes.

In this work we propose a fully Bayesian semiparametric method to estimate the intensity of an inhomogeneous spatial point process. The basic idea is to first convert intensity estimation into a Poisson regression setting via binning data points on a regular grid, and then model the log intensity semiparametrically using an adaptive version of Gaussian Markov random fields to smooth the corresp...

متن کامل

Nonparametric Estimation for Stationary Processes

We consider the kernel density and regression estimation problem for a wide class of causal processes. Asymptotic normality of the kernel estimators is established under minimal regularity conditions on bandwidths. Optimal uniform error bounds are obtained without imposing strong mixing conditions. The proposed method is based on martingale approximations and provides a unified framework for no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 2016

ISSN: 0862-7940,1572-9109

DOI: 10.1007/s10492-016-0144-8